
Software Infrastructure for the I-WAY High-PerformanceDistributed Computing ExperimentIan Foster, Jonathan Geisler, Bill Nickless, Warren Smith, Steven TueckeMathematics and Computer Science DivisionArgonne National LaboratoryArgonne, IL 60439, U.S.A.ffoster,geisler,nickless,wsmith,tueckeg@mcs.anl.govhttp://www.mcs.anl.gov/globus/AbstractHigh-speed wide area networks are expected to enableinnovative applications that integrate geographicallydistributed, high-performance computing, database,graphics, and networking resources. However, thereis as yet little understanding of the higher-level ser-vices required to support these applications, or of thetechniques required to implement these services in ascalable, secure manner. We report on a large-scaleprototyping e�ort that has yielded some insights intothese issues. Building on the hardware base providedby the I-WAY, a national-scale Asynchronous TransferMode (ATM) network, we developed an integrated man-agement and application programming system, calledI-Soft. This system was deployed at most of the 17 I-WAY sites and used by many of the 60 applicationsdemonstrated on the I-WAY network. In this arti-cle, we describe the I-Soft design and report on lessonslearned from application experiments.1 IntroductionRecent developments in high-performance networks,computers, information servers, and display technolo-gies make it feasible to design network-enabled toolsthat incorporate remote compute and information re-sources into local computational environments, andcollaborative environments that link people, comput-ers, and databases into collaborative sessions. The de-velopment of such tools and environments raises nu-merous technical problems, including the naming andlocation of remote computational, communication, anddata resources; the integration of these resources intocomputations; the location, characterization, and se-

lection of available network connections; the provisionof security and reliability; and uniform, e�cient accessto data.Previous research and development e�orts have pro-duced a variety of candidate \point solutions" [19].For example, DCE, CORBA, Condor [16], Nimrod [1],and Prospero [18] address problems of locating and/oraccessing distributed resources; �le systems such asAFS [17], DFS, and Tru�es [4] address problems ofsharing distributed data; tools such as Nexus [10],MPI [14], PVM [11], and Isis [2] address problemsof coupling distributed computational resources; andlow-level network technologies such as AsynchronousTransfer Mode (ATM) promise gigabit/sec communi-cation. However, little work has been done to inte-grate these solutions in a way that satis�es the scalabil-ity, performance, functionality, reliability, and securityrequirements of realistic high-performance distributedapplications in large-scale internetworks.It is in this context that the I-WAY project [6]was conceived in early 1995, with the goal of pro-viding a large-scale testbed in which innovative high-performance and geographically-distributed applica-tions could be deployed. This application focus, ar-gued the organizers, was essential if the research com-munity was to discover the critical technical problemsthat must be addressed to ensure progress, and to gaininsights into the suitability of di�erent candidate solu-tions. In brief, the I-WAY was an ATM network con-necting supercomputers, mass storage systems, and ad-vanced visualization devices at 17 di�erent sites withinNorth America. It was deployed at the Supercom-puting conference (SC'95) in San Diego in December1995, and used by over 60 application groups for ex-periments in high-performance computing, collabora-tive design, and the coupling of remote supercomputers



and databases into local environments.A central part of the I-WAY experiment was the de-velopment of a management and application program-ming environment, called I-Soft. The I-Soft system wasdesigned to run on dedicated I-WAY point of presence(I-POP) machines deployed at each participating site,and provided uniform authentication, resource reser-vation, process creation, and communication functionsacross I-WAY resources. In this article, we describethe techniques employed in I-Soft development and wesummarize the lessons learned during the deploymentand evaluation process. The principal contributionsare the design, prototyping, preliminary integration,and application-based evaluation of the following novelconcepts and techniques:1. Point of presence machines as a structuring andmanagement technique for wide-area distributedcomputing.2. A computational resource broker that uses sched-uler proxies to provide a uniform scheduling envi-ronment that integrates diverse local schedulers.3. The use of authorization proxies to construct auniform authentication environment and de�netrust relationships across multiple administrativedomains.4. Network-aware parallel programming tools thatuse con�guration information regarding topology,network interfaces, startup mechanisms, and nodenaming to provide a uniformview of heterogeneoussystems and to optimize communication perfor-mance.The rest of this article is as follows. In Section 2,we review the applications that motivated the develop-ment of the I-WAY and describe the I-WAY network.In Section 3, we introduce the I-WAY software architec-ture, and in Sections 4{8 we describe various compo-nents of this architecture and discuss lessons learnedwhen these components were used in the I-WAY ex-periment. In Section 9, we discuss some related work.Finally, in Section 10, we present our conclusions andoutline directions for future research.2 The I-WAY ExperimentFor clarity, in this article we refer consistently to theI-WAY experiment in the past tense. However, we em-phasize that many I-WAY components have remainedin place after SC'95 and that follow-on systems are be-ing designed and constructed.

2.1 ApplicationsA unique aspect of the I-WAY experiment was itsapplication focus. Previous gigabit testbed experi-ments focused on network technologies and low-levelprotocol issues, using either synthetic network loads orspecialized applications for experiments (e.g., see [8]).The I-WAY, in contrast, was driven primarily by therequirements of a large application suite. As a result ofa competitive proposal process in early 1995, around 70application groups were selected to run on the I-WAY(over 60 were demonstrated at SC'95). These applica-tions fell into three general classes [6]:1. Many applications coupled immersive virtual envi-ronments with remote supercomputers, data sys-tems, and/or scienti�c instruments. The goal ofthese projects was typically to combine state-of-the-art interactive environments and backend su-percomputing to couple users more tightly withcomputers, while at the same time achieving dis-tance independence between resources, developers,and users.2. Other applications coupled multiple, geographi-cally distributed supercomputers in order to tackleproblems that were too large for a single supercom-puter or that bene�ted from executing di�erentproblem components on di�erent computer archi-tectures.3. A third set of applications coupled multiple virtualenvironments so that users at di�erent locationscould interact with each other and with supercom-puter simulations.Applications in the �rst and second classes are pro-totypes for future \network-enabled tools" that en-hance local computational environments with remotecompute and information resources; applications in thethird class are prototypes of future collaborative envi-ronments.2.2 The I-WAY networkThe I-WAY network connected multiple high-enddisplay devices (including immersive CAVETM andImmersaDeskTM virtual reality devices [5]); mass stor-age systems; specialized instruments (such as micro-scopes); and supercomputers of di�erent architectures,including distributed memory multicomputers (IBMSP, Intel Paragon, Cray T3D, etc.), shared-memorymultiprocessors (SGI Challenge, Convex Exemplar),and vector multiprocessors (Cray C90, Y-MP). These



devices were located at 17 di�erent sites across NorthAmerica.This heterogeneous collection of resources was con-nected by a network that was itself heterogeneous. Var-ious applications used components of multiple networks(e.g., vBNS, AAI, ESnet, ATDnet, CalREN, NREN,MREN, MAGIC, and CASA) as well as additional con-nections provided by carriers; these networks used dif-ferent switching technologies and were interconnectedin a variety of ways. Most networks used ATM toprovide OC-3 (155 Mb/sec) or faster connections; oneexception was CASA, which used HIPPI technology.For simplicity, the I-WAY standardized on the use ofTCP/IP for application networking; in future exper-iments, alternative protocols will undoubtedly be ex-plored. The need to con�gure both IP routing tablesand ATM virtual circuits in this heterogeneous environ-ment was a signi�cant source of implementation com-plexity.3 I-WAY InfrastructureWe now describe the software (and hardware) infras-tructure developed for I-WAY management and appli-cation programming.3.1 RequirementsWe believe that the routine realization of high-performance, geographically distributed applicationsrequires a number of capabilities not supported byexisting systems. We list �rst user-oriented require-ments; while none has been fully addressed in the I-WAY software environment, all have shaped the solu-tions adopted.1. Resource naming and location. The ability toname computational and information resources ina uniform, location-independent fashion and to lo-cate resources in large internets based on user orapplication-speci�ed criteria.2. Uniform programming environment. The abilityto construct parallel computations that refer toand access diverse remote resources in a mannerthat hides, to a large extent, issues of location,resource type, network connectivity, and latency.3. Autocon�guration and resource characterization.The ability to make sensible con�guration choicesautomatically and, when necessary, to obtain in-formation about resource characteristics that canbe used to optimize con�gurations.

4. Distributed data services. The ability to accessconceptually \local" �le systems in a uniform fash-ion, regardless of the physical location of a com-putation.5. Trust management. Authentication, authoriza-tion, and accounting services that operate evenwhen users do not have strong prior relationshipswith the sites controlling required resources.6. Con�dentiality and integrity. The ability for acomputation to access, communicate, and processprivate data securely and reliably on remote sites.Solutions to these problems must be scalable to largenumbers of users and resources.The fact that resources and users exist at di�erentsites and in di�erent administrative domains introducesanother set of site-oriented requirements. Di�erentsites not only provide di�erent access mechanisms fortheir resources, but also have di�erent policies govern-ing their use. Because individual sites have ultimateresponsibility for the secure and proper use of their re-sources, we cannot expect them to relinquish controlto an external authority. Hence, the problem of devel-oping management systems for I-WAY{like systems isabove all one of de�ning protocols and interfaces thatsupport a negotiation process between users (or bro-kers acting on their behalf) and the sites that controlthe resources that users want to access.The I-WAY testbed provided a unique opportunityto deploy and study solutions to these problems in acontrolled environment. Because the number of users(few hundred) and sites (around 20) were moderate, is-sues of scalability could, to a large extent, be ignored.However, the high pro�le of the project, its applicationfocus, and the wide range of application requirementsmeant that issues of security, usability, and generalitywere of critical concern. Important secondary require-ments were to minimize development and maintenancee�ort, both for the I-WAY development team and theparticipating sites and users.3.2 Design overviewIn principle, it would appear that the requirementsjust elucidated could be satis�ed with purely software-based solutions. Indeed, other groups exploring theconcept of a \metacomputer" have proposed software-only solutions [3, 12]. A novel aspect of our approachwas the deployment of a dedicated I-WAY Point ofPresence, or I-POP, machine at each participating site.As we explain in detail in the next section, these ma-chines provided a uniform environment for deployment



of management software, and also simpli�ed validationof security solutions by serving as a \neutral" zone un-der the joint control of I-WAY developers and localauthorities.Deployed on these I-POP machines was a softwareenvironment, I-Soft, providing a variety of services, in-cluding scheduling, security (authentication and audit-ing), parallel programming support (process creationand communication), and a distributed �le system.These services allowed a user to log on to any I-POPand then schedule resources on heterogeneous collec-tions of resources, initiate computations, and commu-nicate between computers and with graphics devices|all without being aware of where these resources werelocated or how they were connected.In the next four sections, we provide a detailed dis-cussion of various aspects of the I-POP and I-Soft de-sign, treating in turn the I-POPs, scheduler, security,parallel programming tools, and �le systems. The dis-cussion includes both descriptive material and a criticalpresentation of the lessons learned as a result of I-WAYdeployment and demonstration at SC'95.4 Point of Presence MachinesWe have explained why management systems for I-WAY{like systems need to interface to local manage-ment systems, rather than manage resources directly.One critical issue that arises in this context is the phys-ical location of the software used to implement theseinterfaces. For a variety of reasons, it is desirable thatthis software execute behind site �rewalls. Yet thislocation raises two di�cult problems: sites may, justi-�ably, be reluctant to allow outside software to run ontheir systems; and system developers will be requiredto develop interfaces for many di�erent architectures.The use of I-POP machines resolve these two prob-lems by providing a uniform, jointly administered phys-ical location for interface code. The name is chosen byanalogy with a comparable device in telephony. Typ-ically, the telephone company is responsible for, andmanages, the telephone network, while the customerowns the phones and in-house wiring. The interface be-tween the two domains lies in a switchbox which servesas the telephone company's \point of presence" at theuser site.4.1 I-POP designFigure 1 shows the architecture of an I-POP ma-chine. It is a dedicated workstation, accessible via theInternet and operating inside a site's �rewalls. It runs
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Figure 1. An I-WAY Point of Presence (I-POP)
machinea standard set of software supplied by the I-Soft de-velopers. An ATM interface allows it to monitor and,in principle, manage the site's ATM switch; it also al-lows the I-POP to use the ATM network for manage-ment tra�c. Site-speci�c implementations of a sim-ple management interface allow I-WAY managementsystems to communicate with other machines at thesite to allocate resources to users, start processes onresources, and so forth. The Andrew distributed �lesystem (AFS) [17] is used as a repository for systemsoftware and status information.Development, maintenance, and auditing costs aresigni�cantly reduced if all I-POP computers are of thesame type. In the I-WAY experiment, we standardizedon Sun SPARCStations. A standard software con�g-uration included SunOS 4.1.4 with latest patches; alimited set of Unix utilities; the Cygnus release of Ker-beros 4; AFS; the I-WAY scheduler; and various se-curity tools such as Tripwire [15], TCP wrappers, andauditing software. This software was maintained at acentral site (via AFS) and could be installed easily oneach I-POP; furthermore, the use of Tripwire meantthat it was straightforward to detect changes to thebase con�guration.The I-POP represented a dedicated point of pres-ence for the I-WAY at the user site. It was jointlymanaged: the local site could certify the I-POP's soft-ware con�guration, and could disconnect the I-POP tocut access to the I-WAY in the event of a security prob-lem; similarly, the I-WAY security team could log ac-cesses, check for modi�cations to its con�guration, andso forth. The dedicated nature of the I-POP meantthat its software con�guration could be kept simple,facilitating certi�cation and increasing trust.



4.2 I-POP discussionSeventeen sites deployed I-POP machines. For themost part the e�ort required to install software, inte-grate a site into the I-WAY network, and maintain thesite was small (in our opinion, signi�cantly less thanif I-POPs had not been used). The fact that all I-POPs shared a single AFS cell proved extremely usefulas a means of maintaining a single, shared copy of I-Soft code and as a mechanism for distributing I-WAYscheduling information. The deployment of I-POPswas also found to provide a conceptual framework thatsimpli�ed the task of explaining the I-WAY infrastruc-ture, both to users and to site administrators.While most I-POPs were con�gured with ATMcards, we never exploited this capability to monitoror control the ATM network. The principal reason wasthat at many sites, the ATM switch to which the I-POP was connected managed tra�c for both I-WAYand non{I-WAY resources. Hence, there was a natu-ral reluctance to allow I-POP software to control theATM switches. These authentication, authorization,and policy issues will need to be addressed in futureI-WAY{like systems.We note that the concept of a Point of Presencemachine as a locus for management software in a het-erogeneous I-WAY{like system is a unique contributionof this work. The most closely related development isthat of the ACTS ATM Internetwork (AAI) networktestbed group: they deployed fast workstations at eachsite in a Gigabit testbed, to support network through-put experiments [8].5 SchedulerI-WAY{like systems require the ability to locatecomputational resources matching various criteria ina heterogeneous, geographically distributed pool. Asnoted above, political and technical constraints makeit infeasible for this requirement to be satis�ed by asingle \I-WAY scheduler" that replaces the schedulersthat are already in place at various sites. Instead,we need to think in terms of a negotiation process bywhich requests (ideally, expressible in a fairly abstractform, e.g., \N Giga
ops," or \X nodes of type Y, withmaximum latency Z") are handled by an independententity, which then negotiates with the site schedulersthat manage individual resources. We coin the termComputational Resource Broker (CRB) to denote thisentity. In an Internet-scale distributed computing sys-tem, we can imagine a network of such brokers. In theI-WAY, one was su�cient.

5.1 Scheduler designThe practical realization of the CRB concept re-quires the development of fairly general user-to-CRBand CRB-to-resource scheduler protocols. Time con-straints in the I-WAY project limited what we couldachieve in each area. On the user-to-CRB side, weallowed users to request access only to prede�ned dis-joint subsets of I-WAY computers called virtual ma-chines; on the CRB-to-resource scheduler side, we re-quired sites to turn over scheduling control of speci�edresources to the I-WAY scheduler, which would thenuse the resources to construct virtual machines. Ine�ect, our simple CRB obtained access to a block ofresources, which it then distributed to its users.The scheduler that was de�ned to meet these re-quirements provided management functions that al-lowed administrators to con�gure dedicated resourcesinto virtual machines, obtain status information, andso forth; and user functions that allowed users to listavailable virtual machines and to determine status, listqueued requests, or request time on a particular virtualmachine.The scheduler implementation was structured interms of a single central scheduler and multiple lo-cal scheduler daemons. The central scheduler dae-mon maintained the queues and tables representing thestate of the di�erent virtual machines, and was respon-sible for allocating time on these machines on a �rst-come, �rst-served basis. It also maintained state infor-mation on the AFS �le system, so as to provide somefault tolerance in the case of daemon failures. The cen-tral scheduler communicated with local scheduler dae-mons, one per I-POP, to request that operations beperformed on particular machines. Local schedulersperformed site-dependent actions in response to threesimple requests from the central scheduler.� Allocate resource. This request enables a localscheduler to perform any site-speci�c initializationrequired to make a resource usable by a speci-�ed user, for example, by initializing switch con-�gurations so that processors allocated to a usercan communicate, and propagating con�gurationdata.� Create process. This request asks a local sched-uler to create a process on a speci�ed processor,as a speci�ed user: it implements, in e�ect, a Unixremote shell, or rsh, command. This providesthe basic functionality required to initiate remotecomputations; as we discuss below, it can be useddirectly by a user, and is also used to implementother user-level functions such as ixterm (start an



X-terminal process on a speci�ed processor), ircp(start a copy process on a speci�ed processor), andimpirun (start an MPI program on a virtual ma-chine).� Deallocate resource. This request enables a localscheduler to perform any site-speci�c operationsthat may be required to terminate user access to aresource: for example, disabling access to a high-speed interconnect, killing processes, or deletingtemporary �les.5.2 Scheduler discussionThe basic scheduler structure just described was de-ployed on a wide variety of systems (interfaces weredeveloped for all I-WAY resources) and was used suc-cessfully at SC'95 to schedule a large number of users.Its major limitations related not to its basic structurebut to the too-restrictive interfaces between user andscheduler and scheduler and local resources.The concept of using �xed virtual machines asschedulable units was only moderately successful. Of-ten, no existing virtual machine met user requirements,in which case new virtual machines had to be con�g-ured manually. This di�culty would have been avoidedif even a very simple speci�cation language that allowedrequests of the form \give me M nodes of type X andN nodes of type Y " had been supported. This featurecould easily be integrated into the existing framework.The development of a more sophisticated resource de-scription language and scheduling framework is a moredi�cult problem and will require further research.A more fundamental limitation related to the oftenlimited functionality provided by the non{I-WAY re-source schedulers with which local I-WAY schedulershad to negotiate. Many were unable to inquire aboutcompletion time of scheduled jobs (and hence expectedavailability of resources) or to reserve computationalresources for speci�ed timeslots; several sites providedtimeshared rather than dedicated access. In addition,at some sites, networking and security concerns re-quired that processors intended for I-WAY use be spe-cially con�gured. We compensated either by dedicat-ing partitions to I-WAY users or by timesharing ratherthan scheduling. Neither solution was ideal. In par-ticular, the use of dedicated partitions meant that fre-quent negotiations were required to adapt partition sizeto user requirements, and that computational resourceswere often idle. The long-term solution probably isto develop more sophisticated schedulers for resourcesthat are to be incorporated into I-WAY{like systems.However, applications also may need to become more


exible about what type and \quality" of resourcesthey can accept.We note that while many researchers have ad-dressed problems relating to scheduling computationalresources in parallel computers or local area networks,few have addressed the distinctive problems that arisewhen resources are distributed across many sites. Le-gion [13] and Prospero [18] are two exceptions. In par-ticular, Prospero's \system manager" and \node man-ager" processes have some similarities to our centraland local managers. However, neither system supportsinterfaces to other schedulers: they require full controlof scheduled resources.6 SecuritySecurity is a major and multifaceted issue in I-WAY{like systems. Ease-of-use concerns demand auniform authentication environment that allows a userto authenticate just once in order to obtain access togeographically distributed resources; performance con-cerns require that once a user is authenticated, the au-thorization overhead incurred when accessing a newresource should be small. Both uniform authenticationand low-cost authorization are complicated in scalablesystems, because users will inevitably need to access re-sources located at sites with which they have no priortrust relationship.6.1 Security designWhen developing security structures for the I-WAYsoftware environment, we focused on providing a uni-form authentication environment. We did not addressin any detail issues relating to authorization, account-ing, or the privacy and integrity of user data. Our goalwas to provide security at least as good as that existingat the I-WAY sites. Since all sites used clear-text pass-word authentication, this constraint was not especiallystringent. Unfortunately, we could not assume the ex-istence of a distributed authentication system such asKerberos (or DCE, which uses Kerberos) because nosuch system was available at all sites.Our basic approach was to separate the authenti-cation problem into two parts: authentication to theI-POP environment and authentication to the localsites. Authentication to I-POPs was handled by usinga telnet client modi�ed to use Kerberos authentica-tion and encryption. This approach ensured that userscould authenticate to I-POPs without passing pass-words in clear text over the network. The schedulersoftware kept track of which user id was to be usedat each site for a particular I-WAY user, and served



as an \authentication proxy," performing subsequentauthentication to other I-WAY resources on the user'sbehalf. This proxy service was invoked each time auser used the command language described above toallocate computational resources or to create processes.The implementation of the authentication proxymechanism was integrated with the site-dependentmechanisms used to implement the scheduler inter-face described above. In the I-WAY experiment, mostsites implemented all three commands using a privi-leged (root) rsh from the local I-POP to an associatedresource. This method was used because of time con-straints and was acceptable only because the local siteadministered the local I-POP, and the rsh request wassent to a local resource over a secure local network.6.2 Security discussionThe authentication mechanism just describedworked well in the sense that it allowed users to au-thenticate once (to an I-POP) and then access any I-WAY resource to which access was authorized. The\authenticate-once" capability proved to be extremelyuseful and demonstrated the advantages of a commonauthentication and authorization environment.One de�ciency of the approach related to the de-gree of security provided. Root rsh is an unaccept-able long-term solution even when the I-POP is totallytrusted, because of the possibility of IP-spoo�ng at-tacks. We can protect against these attacks by usinga remote shell function that uses authentication (forexample, one based on Kerberos [20] or PGP, eitherdirectly or via DCE). For similar reasons, communica-tions between the scheduling daemons should also beauthenticated.A more fundamental limitation of the I-WAY au-thentication scheme as implemented was that each userhad to have an account at each site to which access wasrequired. Clearly, this is not a scalable solution. Onealternative is to extend the mechanisms that map I-WAY user ids to local user ids, so that they can beused to map I-WAY user ids to preallocated \I-WAYproxy" user ids at the di�erent sites. The identity ofthe individual using di�erent proxies at di�erent timescould be recorded for audit purposes. However, thisapproach will work only if alternative mechanisms canbe developed for the various functions provided by an\account." The formal application process that is typ-ically associated with the creation of an account servesnot only to authenticate the user but also to estab-lish user obligations to the site (e.g., \no commercialwork" is a frequent requirement at academic sites) andto de�ne the services provided by the site to the user

(e.g., backup policies). Proxy accounts address onlythe authentication problem (if sites trust the I-WAY).Future approaches will probably require the develop-ment of formal representations of conditions of use, aswell as mechanisms for representing transitive relation-ships. (For example, a site may agree to trust any useremployed by an organization with which it has formal-ized a trust relationship. Similarly, an organizationmay agree on behalf of its employees to obligations as-sociated with the use of certain resources.)7 Parallel Programming ToolsA user who has authenticated to an I-POP and ac-quired a set of computational resources then requiresmechanisms for creating computations on these re-sources. At a minimum, these mechanisms must sup-port the creation of processes on di�erent processorsand the communication of data between these pro-cesses. Because of the complexity and heterogeneityof I-WAY{like environments, tools should ideally alsorelieve the programmer of the need to consider low-level details relating to network structure. For exam-ple, tools should handle conversions between di�erentdata representations automatically, and be able to usedi�erent protocols when communicating within ratherthan between parallel computers. At the same time,the user should be able to obtain access to low-level in-formation (at an appropriate level of abstraction) whenit is required for optimization purposes.7.1 Parallel tools designThe irsh and ixterm commands described above al-low authenticated and authorized users to access, andinitiate computation on, any I-WAY resource. Severalusers relied on these commands alone to initiate dis-tributed computations that then communicated by us-ing TCP/IP sockets. However, this low-level approachdid not hide (or exploit) any details of the underlyingnetwork.To support the needs of users desiring a higher-level programming model, we adapted the Nexus mul-tithreaded communication library [10] to execute in anI-WAY environment. Nexus supports automatic con-�guration mechanisms that allow it to use informationcontained in resource databases to determine whichstartup mechanisms, network interfaces, and protocolsto use in di�erent situations. For example, in a vir-tual machine connecting IBM SP and SGI Challengecomputers with both ATM and Internet networks,Nexus uses three di�erent protocols (IBM proprietaryMPL on the SP, shared-memory on the Challenge, and



TCP/IP or AAL5 between computers), and selects ei-ther ATM or Internet network interfaces, depending onnetwork status. We modi�ed the I-WAY scheduler toproduce appropriate resource database entries when avirtual machine was allocated to a user. Nexus couldthen use this information when creating a user compu-tation. (Nexus support for multithreading should, inprinciple, also be useful|for latency hiding|althoughin practice it was not used for that purpose during theI-WAY experiment.)Several other libraries, notably the CAVEcomm vir-tual reality library [7] and the MPICH implementationof MPI, were extended to use Nexus mechanisms [9].Since MPICH is de�ned in terms of an \abstract point-to-point communication device," an implementation ofthis device in terms of Nexus mechanisms was notdi�cult. Other systems that use Nexus mechanismsinclude the parallel language CC++ and the paral-lel scripting language nPerl, used to write the I-WAYscheduler.7.2 Parallel tools discussionThe I-WAY experiment demonstrated the advan-tages of the Nexus automatic con�guration mecha-nisms. In many cases, user were able to develop appli-cations with high-level tools such as MPI, CAVEcomm,and/or CC++, without any knowledge of low-level de-tails relating to the compute and network resourcesincluded in a computation.A signi�cant di�culty revealed by the I-WAY exper-iment related to the mechanisms used to generate andmaintain the con�guration information used by Nexus.While resource database entries were generated auto-matically by the scheduler, the information containedin these entries (such as network interfaces) had to beprovided manually by the I-Soft team. The discov-ery, entry, and maintenance of this information provedto be a signi�cant source of overhead, particularly inan environment in which network status was changingrapidly. Clearly, this information should be discoveredautomatically whenever possible. Automatic discov-ery would make it possible, for example, for a paralleltool to use dedicated ATM links if these were available,but to fall back automatically to shared Internet if theATM link was discovered to be unavailable. The devel-opment of such automatic discovery techniques remainsa challenging research problem.The Nexus communication library provides mecha-nisms for querying the resource database, which userscould have used to discover some properties of the ma-chines and networks on which they were executing. Inpractice, few I-WAY applications were con�gured to

use this information; however, we believe that this sit-uation simply re
ects the immature state of practicein this area, and that users will soon learn to writeprograms that exploit properties of network topology,etc. Just what information users will �nd useful re-mains to be seen, but presumably enquiry functionsthat reveal the number of machines involved in a com-putation and the number of processors in each ma-chine would de�nitely be required. One applicationthat could certainly bene�t from access to informa-tion about network topology is the I-WAY MPI im-plementation. Currently, this library implements col-lective operations using algorithms designed for mul-ticomputer environments; presumably, communicationcosts can often be reduced by using communicationstructures that avoid intermachine communication.8 File SystemsI-WAY{like systems introduce three related require-ments with a �le-system 
avor. First, many usersrequire access to various status data and utility pro-grams at many di�erent sites. Second, users runningprograms on remote computers must be able to ac-cess executables and con�guration data at many dif-ferent sites. Third, application programs must be ableto read and write potentially large data sets. Thesethree requirements have very di�erent characteristics.The �rst requires support for multiple users, consis-tency across multiple sites, and reliability. The secondrequires somewhat higher performance (if executablesare large), but does not require support for multipleusers. The third requires, above all, high performance.We believe that these three requirements are best sat-is�ed with di�erent technologies.The I-Soft system supported only the �rst of theserequirements. An AFS cell (with three servers for reli-ability) was deployed and used as a shared repositoryfor I-WAY software, and also to maintain scheduler sta-tus information. The AFS cell was accessible only fromthe I-POPs, since many I-WAY computers did not sup-port AFS, and when they did, authentication problemsmade access di�cult. The only assistance provided forthe second and third requirements was a remote copy(ircp) command that supported the copying of datafrom one machine to another.While the AFS system was extremely useful, thelack of distributed �le system support on I-WAY nodeswas a serious de�ciency. Almost all users found thatcopying �les and con�guration data to remote siteswas an annoyance, and some of the most ambitiousI-WAY applications had severe problems postprocess-ing, transporting, and visualizing the large amounts of



data generated at remote sites. Future I-WAY{like sys-tems should support something like AFS on all nodes,and if necessary provide specialized high-performancedistributed data access mechanisms for performance-critical applications.9 Related WorkIn preceding sections, we have referred to a num-ber of systems that provide point solutions to problemsaddressed in I-Soft development. Here, we review sys-tems that seek to provide an integrated treatment ofdistributed system issues, similar or broader in scopethan I-Soft.The Distributed Computing Environment (DCE)and Common Object Request Broker Architecture(CORBA) are two major industry-led attempts to pro-vide a unifying framework for distributed computing.Both de�ne (or will de�ne in the near future) a stan-dard directory service, remote procedure call (RPC),security service, and so forth; DCE also de�nes aDistributed File Service (DFS) derived from AFS. Is-sues such as fault tolerance and interoperability be-tween languages and systems are addressed. In gen-eral, CORBA is distinguished from DCE by its higherlevel, object-oriented architecture. Some DCE mecha-nisms (RPC, DFS) may well prove to be appropriatefor implementing I-POP services; CORBA directoryservices may be useful for resource location. However,both DCE and CORBA appear to have signi�cant de-�ciencies as a basis for application programming in I-WAY{like systems. In particular, the remote procedurecall is not well-suited to applications in which perfor-mance requirements demand asynchronous communi-cation, multiple outstanding requests, and/or e�cientcollective operations.The Legion project [13] is another project develop-ing software technology to support computing in wide-area environments. Issues addressed by this wide-reaching e�ort include scheduling, �le systems, secu-rity, fault tolerance, and network protocols. The I-Softe�ort is distinguished by its focus on high-performancesystems and by its use of I-POP and proxy mechanismsto enhance interoperability with existing systems.10 ConclusionsWe have described the management and applicationprogramming environment developed for the I-WAYdistributed computing experiment. This system in-corporates a number of ideas that, we believe, maybe useful in future research and development e�orts.

In particular, it uses point of presence machines as ameans of simplifying system con�guration and man-agement, scheduler proxies for distributed scheduling,authentication proxies for distributed authentication,and network-aware tools that can exploit con�gurationinformation to optimize communication behavior. TheI-Soft development also took preliminary steps towardsintegrating these diverse components, showing, for ex-ample, how a scheduler can provide network topologyinformation to parallel programming tools.The SC'95 event provided an opportunity for intenseand comprehensive evaluation of the I-Soft and I-POPsystems. I-Soft was a success in that most applicationsran successfully at least some of the time; the networkrather than the software proved to be the least reliablesystem component. Speci�c de�ciencies and limita-tions revealed by this experience have been detailed inthe text. More generally, we learned that system com-ponents that are typically developed in isolation mustbe more tightly integrated if performance, reliability,and usability goals are to be achieved. For example,resource location services in future I-WAY{like systemswill need low-level information on network characteris-tics; schedulers will need to be able to schedule networkbandwidth as well as computers; and parallel program-ming tools will need up-to-date information on networkstatus.We are now working to address some of the crit-ical research issues identi�ed in I-Soft development.The Globus project, involving Argonne, Caltech, theAerospace Corporation, and Trusted Information Sys-tems, is addressing issues of resource location (com-putational resource brokers), automatic con�guration,scalable trust management, and high-performance dis-tributed �le systems. In addition, we and others arede�ning and constructing future I-WAY{like systemsthat will provide further opportunities to evaluate man-agement and application programming systems such asI-Soft.AcknowledgmentsThe I-WAY was a multi-institutional, multi-individual e�ort. Tom DeFanti, Rick Stevens, TimKuhfuss, Maxine Brown, Linda Winkler, Mary Spada,and Remy Evard played major roles. We acknowledgein particular Carl Kesselman and Steve Schwab (I-Softdesign), Gene Rackow (I-POP software), Judy War-ren (AFS), Doru Marcusiu (I-Soft deployment), BillGropp and Ewing Lusk (MPI), and Gary Minden, MikeSt Johns, and Ken Rowe (security architecture). Thiswork was supported in part by the Mathematical, In-formation, and Computational Sciences Division sub-
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